Machine Unlearning

Investigating methods to selectively remove information from trained models while preserving overall performance

Corrective Machine Unlearning

(Goel et al., 2024). Machine Learning models increasingly face data integrity challenges due to the use of large-scale training datasets drawn from the internet. We study what model developers can do if they detect that some data was manipulated or incorrect. Such manipulated data can cause adverse effects like vulnerability to backdoored samples, systematic biases, and in general, reduced accuracy on certain input domains. Often, all manipulated training samples are not known, and only a small, representative subset of the affected data is flagged. We formalize “Corrective Machine Unlearning” as the problem of mitigating the impact of data affected by unknown manipulations on a trained model, possibly knowing only a subset of impacted samples. We demonstrate that the problem of corrective unlearning has significantly different requirements from traditional privacy-oriented unlearning. We find most existing unlearning methods, including the gold-standard retraining-from-scratch, require most of the manipulated data to be identified for effective corrective unlearning. However, one approach, SSD, achieves limited success in unlearning adverse effects with just a small portion of the manipulated samples, showing the tractability of this setting. We hope our work spurs research towards developing better methods for corrective unlearning and offers practitioners a new strategy to handle data integrity challenges arising from web-scale training.

The WMDP Benchmark: Measuring and Reducing Malicious Use with Unlearning

(Li et al., 2024). The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 3,668 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop RMU, a state-of-the-art unlearning method based on controlling model representations. RMU reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at this link.

Towards adversarial evaluations for inexact machine unlearning

(Goel et al., 2022). Machine Learning models face increased concerns regarding the storage of personal user data and adverse impacts of corrupted data like backdoors or systematic bias. Machine Unlearning can address these by allowing post-hoc deletion of affected training data from a learned model. Achieving this task exactly is computationally expensive; consequently, recent works have proposed inexact unlearning algorithms to solve this approximately as well as evaluation methods to test the effectiveness of these algorithms. In this work, we first outline some necessary criteria for evaluation methods and show no existing evaluation satisfies them all. Then, we design a stronger black-box evaluation method called the Interclass Confusion (IC) test which adversarially manipulates data during training to detect the insufficiency of unlearning procedures. We also propose two analytically motivated baseline methods~(EU-k and CF-k) which outperform several popular inexact unlearning methods. Overall, we demonstrate how adversarial evaluation strategies can help in analyzing various unlearning phenomena which can guide the development of stronger unlearning algorithms.

Related Publications

2024

  1. TMLR
    Corrective Machine Unlearning
    Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal
    Transactions on Machine Learning Research, 2024
  2. ICML
    The WMDP Benchmark: Measuring and Reducing Malicious Use with Unlearning
    Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li, Ann-Kathrin Dombrowski, Shashwat Goel, Gabriel Mukobi, Nathan Helm-Burger, Rassin Lababidi, Lennart Justen, Andrew Bo Liu, Michael Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Ariel Herbert-Voss, Cort B Breuer, Andy Zou, Mantas Mazeika, Zifan Wang, Palash Oswal, Weiran Lin, Adam Alfred Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Ian Steneker, David Campbell, Brad Jokubaitis, Steven Basart, Stephen Fitz, Ponnurangam Kumaraguru, Kallol Krishna Karmakar, Uday Tupakula, Vijay Varadharajan, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks
    In Forty-first International Conference on Machine Learning, 2024

2022

  1. Towards adversarial evaluations for inexact machine unlearning
    Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam Kumaraguru
    arXiv preprint arXiv:2201.06640, 2022